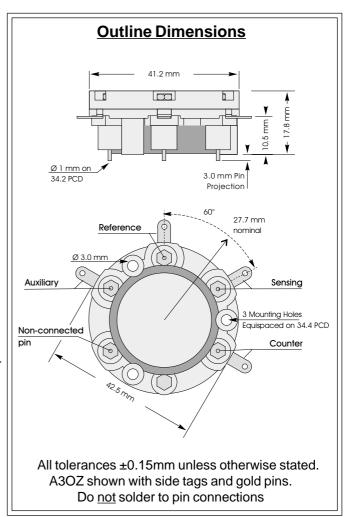
Ozone/Nitrogen dioxide EnviroceL® Specification



A3OZ EnviroceL®

This sensor is one of a range for monitoring gases at levels found in the environment. It is designed to give accurate readings of O₃ or NO₂ in ambient air.

Performance Characteristics

Nominal Range	0-10ppm
Maximum Overload	100ppm
Expected Operating Life	Two years
Output Signal	2.2 ± 0.5 μA/ppm
Resolution at 20°C	20ppb
Temperature Range	-20°C to +50°C
Pressure Range	Atmospheric ± 10%
Pressure Coefficient	No data
T ₉₀ Response Time	<40 seconds
Relative Humidity Range	15 to 90% non-condensing
Typical Baseline Range (pure air)	0 to 0.1ppm equivalent
Maximum Zero Shift (+20°C to +40°C)	0.1ppm equivalent
Typical Long Term Output Drift	<10% signal loss/year in air
Recommended Load Resistor	33Ω
Bias Voltage	Notrequired
Repeatability	1% of signal
Output Linearity	Linear

N.B. All performance data is based on conditions at 20°C, 50%RH, and 1013mBar

Physical Characteristics

Cross-Sensitivity Data Polycarbonate Material Carbon monoxide None Weight 22g Nitrogen Dioxide 100% **Position Sensitivity** 100% Chlorine Storage Life Six months in CTL container **Sulphur Dioxide** None Recommended 0-20°C Hydrogen Sulphide | None Storage Temperature 12 months from date of **Warranty Period** despatch

Doc. Ref.: A3OZ.p65 Issue 1.5 Jan 10, 2001

Distributed by:

Shawcity Ltd 91-92 Shrivenham Hundred Business Park Watchfield, Oxfordshire, SN6 8TY Tel: 01793 780622

Email: sensororders@shawcity.co.uk

www.shawcity.co.uk

Circuitry required

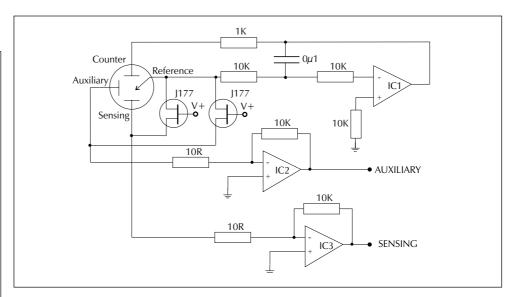

The A3OZ EnviroceL differs from standard three electrode sensors by the introduction of a second working electrode, known as the **Auxiliary**. A suitable operating circuit is shown below.

Figure 1. A3OZ Operating Circuit

IC1 - This amplifier should have either a low offset or have its offset nulled out. The PMI OP-77, OP-90, Intersil or Teledyne 7650, and Linear Technology LT1078 are all suitable.

IC2, IC3 - This amplifier acts as a current to voltage converter and its offset performance is less critical. The OP-77 or similar is a suitable choice

Recommended value of \mathbf{R}_{load} is given in the specification overleaf.

When no gas is present, there is a small zero gas (baseline) signal from each electrode. Upon exposure to nitrogen dioxide/ozone, the *sensing* electrode produces a signal proportional to the concentration of gas. Virtually all the gas is reacted on contact with this electrode, so the *auxiliary* electrode remains largely unaffected and hence the signal remains at its baseline level. It can therefore be assumed the *auxiliary* signal is wholly attributed to the baseline.

The baseline signal of both electrodes is slightly affected by changes in atmospheric conditions (e.g. temperature). However as both are subject to the same conditions, any shift in baseline on the *sensing* electrode will be followed by a similar shift in the *auxiliary*. Hence by comparing the two signals any baseline changes may be compensated.

Evaluating the nitrogen dioxide/ozone concentration of a sample from the two signals is a straightforward subtraction:-.

Then
$$I_{gas} = I_{S} - I_{A}$$

Every effort has been made to ensure the accuracy of this document at the time of printing. In accordance with the company's policy of continued product improvement City Technology Limited reserves the right to make product changes without notice. No liability is accepted for any consequential losses, injury or damage resulting from the use of this document or from any omissions or errors herein. The data is given for guidance only. It does not constitute a specification or an offer for sale. The products are always subject to a programme of improvement and testing which may result in some changes in the characteristics quoted. As the products may be used by the client in circumstances beyond the knowledge and control of City Technology Limited, we cannot give any warranty as to the relevance of these particulars to an application. It is the clients' responsibility to carry out the necessary tests to determine the usefulness of the products and to ensure their safety of operation in a particular application.